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Supplementary Material: Modelling of the COVID-19 protection 1 

framework to manage the Delta variant of SARS-CoV-2 in Aotearoa New 2 

Zealand 3 

 4 

This appendix includes a detailed description of the model used for the B.1.617.2 (Delta) variant of 5 

SARS-CoV-2 in the New Zealand population. We model transmission of SARS-CoV-2 in the community 6 

using a stochastic age-structured branching process model (Steyn et al., 2022) in a partially vaccinated 7 

population. The model is parameterised to represent the Delta variant, which at the time the 8 

modelling was undertaken was the dominant variant globally and in New Zealand. Infected individuals 9 

are categorised as either clinical or subclinical, with the clinical fraction increasing with age. Subclinical 10 

individuals are assumed to be 𝜏 = 50% as infectious as clinical individuals (Byambasuren et al., 2020; 11 

Davies et al., 2020). Clinical individuals are assigned a symptom onset time which is Gamma distributed 12 

from exposure time with mean 5.5 days and s.d. 2.3 days (Lauer et al., 2020). In the absence of 13 

interventions, we assume generation times follow a Weibull distribution with mean 5.05 days and s.d. 14 

1.9 days (Ferretti et al., 2020). All parameter values used in our model can be found in Supp. Tables 15 

S1, S2 and S3. 16 

This appendix also includes an extensive sensitivity analysis on several of the assumed model 17 

parameters. Results of the sensitivity analysis can be found in Supp. Table S6 and Supp. Figure S2. 18 

 19 

Test-trace-isolate-quarantine system model 20 

A test, trace, isolate, quarantine (TTIQ) system provides an additional reduction in transmission. We 21 

assume that, independently of contact tracing, the probability that an infected individual is confirmed 22 

as a case a result of symptom-triggered testing and test sensitivity is 45% for clinical individuals and 23 

0% for subclinical individuals. There is a delay between symptom onset and detection that is assumed 24 

to be exponentially distributed with mean 4 days. We assume that the detection rate for clinical 25 

individuals is the same for vaccinated and non-vaccinated individuals and across all age groups. Once 26 

an infection is detected, the individual is assumed to be immediately isolated, resulting in an 80% 27 

transmission reduction. Some transmission may still happen within the household and isolation 28 

compliance is not perfect, hence we don’t model isolation as 100% effective in reducing onward 29 

transmission. Contact tracing parameters are dependent on the number of daily cases. If the seven-30 

day rolling average number of daily detected cases remains below 100 cases per day (contact tracing 31 

capacity) for 12 consecutive days, a proportion 𝑝𝑡𝑟𝑎𝑐𝑒 = 0.7 of secondary infections of a confirmed 32 
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case are identified via contact tracing and quarantined with a mean of 3 days from detection of the 33 

index case. This applies to clinical and subclinical contacts. If the number of daily detected cases 34 

exceed the contact tracing capacity, no secondary infections can be traced and quarantined (although 35 

they may still be detected as a result of symptom-triggered testing). Individuals in quarantine (i.e. 36 

asymptomatic or pre-symptomatic traced contacts) are assumed to have a 50% reduction in 37 

transmission. Individuals in isolation (i.e. confirmed cases and symptomatic traced contacts) are 38 

assumed to have an 80% reduction in transmission.  39 

In our results, we report the percentage reduction in transmission as a result of TTIQ. We calculate 40 

this as the relative reduction in the reproduction number of individual 𝑖 as a result of quarantine and 41 

isolation: 42 

𝑇𝑇𝐼𝑄𝑒𝑓𝑓,𝑖 = 1 − (1 − 𝑐𝑞𝑢𝑎𝑟)𝑤𝑞𝑢𝑎𝑟,𝑖 + (1 − 𝑐𝑖𝑠𝑜)𝑤𝑖𝑠𝑜,𝑖 43 

averaged over all infected individuals, where 𝑤𝑞𝑢𝑎𝑟,𝑖 and 𝑤𝑖𝑠𝑜,𝑖 are the fraction of the transmission 44 

kernel (the probability density function of the number of infection events required to link a pair of 45 

cases) that falls in the quarantine and isolation period respectively for individual 𝑖.  46 

 47 

Age-structured transmission model  48 

The stochastic model tracks the number of infections in the community. The population is divided into 49 

15 five-year age bands, plus an over-75-year-old age band. The relative contact rate within each and 50 

between age groups are defined by a matrix 𝐶 as in (Steyn et al., 2022). A next-generation matrix 51 

(𝑁𝐺𝑀𝑖,𝑗) defines the average number of individuals in group 𝑖 that will be infected by a single 52 

infectious individual in group 𝑗 over their whole infectious period given a fully susceptible population: 53 

𝑁𝐺𝑀𝑖,𝑗 = 𝑈𝑢𝑖Mji[𝑝𝑐𝑙𝑖𝑛,𝑗 + 𝜏(1 − 𝑝𝑐𝑙𝑖𝑛,𝑗)]     54 

where M is the contact matrix describing mixing rates between age groups (Steyn et al., 2022), 𝑢𝑖 is 55 

the relative susceptibility to infection of age group 𝑖, 𝑝𝑐𝑙𝑖𝑛,𝑗 is the fraction of infections in age group 𝑗 56 

that are clinical, and 𝜏 is the relative infectiousness of subclinical individuals. The basic reproduction 57 

number of the age-structured model is the dominant eigenvalue of the next generation matrix, 58 

denoted 𝑅0 = 𝜌(𝑁𝐺𝑀). In model simulations, the value of the constant 𝑈 is chosen to give the 59 

desired value of 𝑅0.   We assume 𝑅0 = 6.0, approximately representing the Delta variant of SARS-60 

CoV-2  (Kang et al., 2021; Zhang et al., 2021).  61 

The number 𝜆𝑙,𝑗
𝑢 (𝑡) of unvaccinated people in age group 𝑗 and the number 𝜆𝑙,𝑗

𝑣 (𝑡) of vaccinated people 62 

in age group 𝑗 who are infected by clinical individual 𝑙 between time 𝑡 and 𝑡 + 𝛿𝑡 are a Poisson 63 

distributed random variables with respective means: 64 
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𝜆𝑙,𝑗
𝑢 (𝑡) = 𝑌𝑙𝐹𝑙(𝑡) (∫ 𝑤(𝑡′ − 𝑡𝑖𝑛𝑓,𝑙)𝑑𝑡′

𝑡+𝛿𝑡

𝑡
) 𝑁𝐺𝑀𝑗,𝑎𝑙

𝑐𝑙𝑖𝑛(1 − 𝑉𝑙𝑒𝑇)𝑠𝑗
𝑢(𝑡) 

 

(1) 

            𝜆𝑙,𝑗
𝑣 (𝑡) = 𝑌𝑙𝐹𝑙(𝑡) (∫ 𝑤(𝑡′ − 𝑡𝑖𝑛𝑓,𝑙)𝑑𝑡′

𝑡+𝛿𝑡

𝑡 ) 𝑁𝐺𝑀𝑗,𝑎𝑙

𝑐𝑙𝑖𝑛(1 − 𝑉𝑙𝑒𝑇)(1 − 𝑒𝐼)𝑠𝑗
𝑣(𝑡) 

 65 

where: 66 

• 𝑌𝑙  is a gamma distributed random variable with mean 1 and variance 1 𝑘⁄  representing 67 

individual heterogeneity in transmission (Lloyd-Smith et al., 2005). We set 𝑘 = 0.5 which 68 

represents a moderate level of over-dispersion consistent with estimates for SARS-CoV-2 69 

transmission patterns (James et al., 2021; Riou & Althaus, 2020). 70 

• 𝐹𝑙(𝑡) represents the effect of quarantine or isolation on the transmission rate of individual 71 

𝑙 at time 𝑡, and is equal to 1 if individual 𝑙 is not in quarantine/isolation at time 𝑡, equal to 72 

𝑐𝑞𝑢𝑎𝑟 = 0.5 if individual 𝑙 is in quarantine, and equal to 𝑐𝑖𝑠𝑜𝑙 = 0.2 if individual 𝑙 is in 73 

isolation. 74 

• 𝑤(𝜏) is the probability density function of the assumed generation time distribution and 𝑡𝑖𝑛𝑓,𝑙  75 

is the time individual 𝑙 was infected.  76 

• 𝑁𝐺𝑀𝑗,𝑎𝑙

𝑐𝑙𝑖𝑛 = 𝑈𝑢𝑗𝑀𝑎𝑙,𝑗 is the next generation matrix for clinical individuals and 𝑎𝑙  is the age 77 

group of individual 𝑙. 78 

• 𝑉𝑙 is an indicator variable that is equal to 1 is individual 𝑙 is fully vaccinated at the time they 79 

became infected and 0 otherwise𝑠𝑗
𝑢(𝑡) and 𝑠𝑗

𝑣(𝑡) are the fractions of age group 𝑗 that are 80 

unvaccinated and fully vaccinated respectively and have not previously been infected at time 81 

𝑡. 82 

• 𝑒𝐼 and 𝑒𝑇 are vaccine effectiveness against infection and against transmission given infection 83 

parameters, presented in Supplementary Table S1 84 

 85 

The expressions for 𝜆𝑙,𝑗(𝑡) above are multiplied by 𝜏 if individual 𝑙 is subclinical. Note that the factor 86 

𝑌𝑙  means that, in the absence of control measures, the total number of people infected by a randomly 87 

selected individual has a negative binomial distribution with mean 𝑅0 and variance 𝑅0(1 + 𝑅0 𝑘⁄ ) 88 

(Lloyd-Smith et al., 2005) 89 

At each daily time step, the susceptible compartments 𝑠𝑗
𝑢(𝑡) and 𝑠𝑗

𝑣(𝑡) are depleted according to the 90 

number of new infections that occurred in that compartment. Prior infection is assumed to provide 91 

complete immunity against re-infection for the duration of the simulation.  92 
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 93 

Supplementary Figure S1 Timeline showing infectiousness of a case (i.e. probability of transmitting 94 

the virus to a contact) as a function of time since infection. Infectiousness is modelled using a 95 

Weibull distribution (see Equation (1) and Supp. Table S2) with mean 5.05 days and standard 96 

deviation 1.9 days. Case detection through a positive test and isolation happen at the same time. 97 

After isolation, infectiousness is reduced to a lower level (red dashed curve, see Supp. Table S2). 98 

Subclinical infections are not isolated and follow the shape of the blue curve throughout, but with a 99 

lower overall probability of transmission. Note that this diagram does not show the possibility of 100 

quarantine through contact tracing, which would also reduce infectiousness. 101 

 102 

 103 

Hospitalisation and fatality model 104 

Age-stratified hospitalisation rates are as in (Herrera-Esposito & de los Campos, 2021) with an 105 

additional hazard ratio of 2.26 applied to represent the increased severity of the Delta variant relative 106 

to the ancestral strain of SARS-CoV-2(Twohig et al., 2022). Fatality rates are based on those of 107 

(Herrera-Esposito & de los Campos, 2021), adjusted by an odds ratio of 2.32 for Delta (Fisman & Tuite, 108 

2021) (Supp. Table S3). Clinical individuals in age group i with 2 doses of the vaccine are assumed to 109 

require hospitalisation with probability (1 − 𝑒𝐷) 𝑝ℎ𝑜𝑠𝑝,𝑖 𝑝𝑐𝑙𝑖𝑛,𝑖⁄  where 𝑒𝐷 is the vaccine effectiveness 110 

against severe disease in breakthrough infections (Supp. Table S1), 𝑝ℎ𝑜𝑠𝑝,𝑖 is the infection to 111 

hospitalisation ratio for unvaccinated people in age group 𝑖 (Supp. Table S3), and 𝑝𝑐𝑙𝑖𝑛,𝑖 is the fraction 112 

of infections in age group 𝑖 that are clinical. The time between symptom onset and hospitalisation is 113 

assumed to be exponentially distributed with mean 5 days. The length of hospital stay is assumed to 114 
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be exponentially distributed with mean 8 days. Hospitalised cases in age group 𝑖 die with probability 115 

𝐼𝐹𝑅𝑖 𝑝ℎ𝑜𝑠𝑝,𝑖⁄  where 𝐼𝐹𝑅𝑖 is the infection fatality ratio for unvaccinated cases in age group i.  116 

 117 

Vaccination coverage and effectiveness 118 

Vaccine effectiveness assumptions are as shown in Supp. Table S1. All vaccinated individuals have an 119 

overall transmission reduced by 1 − (1 − 𝑒𝐼)(1 − 𝑒𝑇) = 85% and an overall probability of developing 120 

severe disease reduced by 1 − (1 − 𝑒𝐼)(1 − 𝑒𝐷) = 94% . We use a leaky vaccine model as opposed 121 

to an all-or-nothing vaccine model, where a proportion 𝑒𝐼 of vaccinated individuals are completely 122 

immunised and a proportion 1 − 𝑒𝐼 are completely susceptible (Moore et al., 2021). Reality may be 123 

somewhere between these idealised models (i.e. there may be some individual heterogeneity in the 124 

level of protection provided by the vaccine but not as extreme as all-or-nothing). The all-or-nothing 125 

and the leaky vaccine model behave similarly when the proportion of the population with immunity 126 

from prior infection is relatively small. Waning of immunity from prior infection is ignored. 127 

 128 

Supplementary Table S1. Vaccine effectiveness parameters against Delta for 129 

the Pfizer-BioNTech vaccine after 2 doses. Source: (Public Health England, 130 

2021) 131 

Parameter Value 

Effectiveness against infection (𝑒𝐼) 70% 

Effectiveness against transmission given infection (𝑒𝑇) 50% 

Effectiveness against severe disease given infection (𝑒𝐷) 80% 

Implied overall transmission reduction 85% 

Implied overall protection against severe disease 94% 

 132 

 133 

 134 

Supplementary Table S2. Other parameter values used in the “baseline” scenario of our model. 135 

Parameter Value  

Reproduction number excluding effects of immunity 𝑅0 = 6.0 

Incubation period Mean 5.5 days, s.d. 2.3 days 
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Generation interval Mean 5.05 days, s.d. 1.9 days 

Relative infectiousness of subclinical individuals 𝜏 = 0.5  

Heterogeneity in individual reproduction number  𝑘 = 0.5  

Probability of detection for clinical individuals 𝑝𝑡𝑒𝑠𝑡 = 0.45  

Probability of a contact of a confirmed case being traced 𝑝𝑡𝑟𝑎𝑐𝑒 = 0.7  

Relative transmission rate for individuals in quarantine 𝑐𝑞𝑢𝑎𝑟 = 0.5  

Relative transmission rate for individuals in isolation 𝑐𝑖𝑠𝑜𝑙 = 0.2  

Time from symptom onset to isolation Mean 4.0 days, s.d. 4.0 days 

Time from case detection to quarantine of contacts Mean 2.0 days, s.d. 1.2 days 

Time form symptom onset to hospital admission Mean 5.0 days, s.d. 5.0 days 

Length of hospital stay Mean 8.0 days, s.d. 8.0 days 

 136 

 137 

Supplementary Table S3. Age-specific parameter values used in the “baseline” scenario of our 138 

model. 139 

Age (yrs) 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75+ 

2nd dose vax cov*(%) 0 0 62 88 83 84 90 91 93 90 93 92 94 95 96 96 

Pr(clinical) (%) 54.4 55.5 57.7 59.9 62 64 65.9 67.7 69.5 71.2 72.7 74.2 75.5 76.8 78 80.1 

Pr(hosp) (%) 0.19 0.29 0.41 0.61 0.88 1.26 1.84 2.69 3.8 5.56 8.17 11.37 16.15 22.17 30 48.97 

Pr(death) (%) 8E-04 0.002 0.003 0.01 0.01 0.02 0.05 0.09 0.17 0.35 0.67 1.29 2.52 4.74 8.81 26.65 

Susceptibility** 0.46 0.46 0.45 0.56 0.8 0.93 0.97 0.98 0.94 0.93 0.94 0.97 1 0.98 0.9 0.86 

Popn (1000s) 306 327 335 315 337 378 380 338 311 328 329 326 295 251 217 339 

* New Zealand’s 1st dose vaccination coverage as of 3rd  November 2021, scaled up to obtain 90% national coverage 

**Susceptibility for age group 𝑖 is stated relative to susceptibility for age 60-64 years (Davies et al., 2020).  

    Age-dependent rates of clinical disease are based on (Hinch et al., 2021). 

 140 

 141 

 142 

 143 
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Traffic lights trigger points 144 

Supp. Table S4 presents the average number of hospital beds occupied when a given trigger point for 145 

the number of cases is met can be calculated as a model output, which enables the trigger points for 146 

the low, medium and high tolerance scenarios to be directly compared. 147 

 148 

Supplementary Table S4. Trigger criteria used to raise/lower traffic light settings for low, medium, 149 

and high tolerance outbreak management responses (black text), together with the average model 150 

output number of hospital beds occupied (red text) at the time when the corresponding trigger for 151 

the number of cases was met. The high tolerance response uses hospitalisations as the trigger to move 152 

between traffic settings, whereas the other responses use reported cases. These results are provided 153 

to enable direct comparison of the criteria for moving between traffic light settings,    154 

*The “very low tolerance” triggers were only used for the border and community seed sensitivity 155 

analysis. 156 

 157 

  158 

  Very low 

tolerance* 

Low 

tolerance 

Medium 

tolerance 

High 

tolerance 

escalation 

criteria 

 

→  O cases 10 50 200  

hosp beds 4 20 70 100 

→  R cases 25 100 400  

hosp beds 9 40 140 200 

→  E cases 50 300 1200  

hosp beds 20 110 430 600 

relaxation 

criteria 

 

→  G cases 0 0 100  

hosp beds 0 0 40 50 

→  O cases 10 75 300  

hosp beds 4 30 110 150 

→  R cases 30 200 800  

hosp beds 10 70 290 400 
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Derivation of “toy border model” 159 

 160 
Suppose there is a pre-defined tolerance 𝑦∗ for prevalence 𝑦(𝑡) of active community infections. When 161 

𝑦(𝑡) rises above 𝑦∗, stringent control measures are imposed resulting in an effective reproduction 162 

number of 𝑅2 < 1. When 𝑦(𝑡) falls below some proportion 𝛼 of the tolerance 𝑦∗, control measures 163 

are relaxed and the effective reproduction number is 𝑅1 > 1. The parameter 𝛼 < 1 is needed to avoid 164 

instantaneous alternation between escalation and relaxation of control measures; however we will 165 

take the limit 𝛼 → 1 to derive an idealised expression for the average proportion of time spent with 166 

control measures imposed. 167 

In a standard SIR modelling framework, the effective reproduction number 𝑅 is related to the epidemic 168 

growth rate 𝑟 via 169 

𝑅 = 1 + 𝑟𝑔,                                                                                (2) 170 

where 𝑔 is the mean generation interval (Wallinga & Lipsitch, 2007). 171 

If there are b additional infections per unit time introduced into the community via the border, then 172 

prevalence 𝑦(𝑡) is governed by the differential equation 173 

𝑑𝑦

𝑑𝑡
= 𝑟𝑦 + 𝑏.                                                                               (3) 174 

During periods when control measures are relaxed, the prevalence at the start of the period is 𝛼𝑦∗ by 175 

definition, and subsequently grows according to 176 

𝑦(𝑡) = (𝛼𝑦∗ + 𝑏/𝑟1) 𝑒𝑟1𝑡 − 𝑏/𝑟1                                                           (4) 177 

The time taken for prevalence to rise above the threshold 𝑦∗ for imposition of control measures is 178 

therefore 179 

𝑡1 =
1

𝑟1
ln (

𝑦∗ + 𝑏/𝑟1

𝛼𝑦∗ + 𝑏/𝑟1
). 180 

During periods when control measures are imposed, the prevalence at the start of the period is 𝑦∗ by 181 

definition, and subsequently declines according to 182 

𝑖(𝑡) = (𝑦∗ + 𝑏/𝑟2) 𝑒𝑟2𝑡 − b/r2.                                                           (5) 183 

The time taken for prevalence to fall below the threshold 𝛼𝑦∗ for relaxation of control measures is 184 

therefore 185 

𝑡2 =
1

𝑟2
ln (

𝛼𝑦∗ + 𝑏/𝑟2

𝑦∗ + 𝑏/𝑟2
) 186 

If 𝛼 is close to 1, the above expressions for 𝑡1 and 𝑡2 may be written as a Taylor series in 1 − 𝛼: 187 

𝑡1 =
(1−𝛼)𝑦∗

𝑟1𝑦∗+𝑏
+ 𝑂((1 − 𝛼)2),                                                               (6) 188 

𝑡2 = −
(1−𝛼)𝑦∗

𝑟2𝑦∗+𝑏
+ 𝑂((1 − 𝛼)2)                                                            (7) 189 

 190 
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Over a sufficiently long time window, the approximate average proportion of time 𝑝𝑖𝑛𝑡 spent with 191 

control measures in places is therefore 192 

𝑝𝑖𝑛𝑡 =
𝑡2

𝑡1+𝑡2
=

𝑟1+𝑏/𝑦∗

𝑟1−𝑟2
,                                                                      (8) 193 

where we have neglected terms of order (1 − 𝛼)2 and higher. 194 

Writing this in terms of reproduction numbers 𝑅1 and 𝑅2 instead of growth rates 𝑟1 and 𝑟2 gives 195 

𝑝𝑖𝑛𝑡 =
𝑅1−1+𝑏𝑔/𝑦∗

𝑅1−𝑅2
.                                                                           (9) 196 

Note  that  for  this  result  to  be  valid  requires  that 𝑏 < (1 − 𝑅2)𝑦∗/𝑔. If  𝑏 > (1 − 𝑅2)𝑦∗/𝑔, the 197 

large number of border cases means that prevalence will continue to increase above 𝑦∗ even with 198 

control measures in place 100% of the time. 199 

Converting the threshold for prevalence 𝑦∗ to an approximate corresponding threshold 𝑖∗ for 200 

incidence of new infections per day via 𝑦∗ = 𝑔𝑖∗  yields the equation in the main text for 𝑝𝑖𝑛𝑡. 201 

  202 
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Sensitivity analysis 203 

 204 
In addition to the scenarios presented in the main text, we explore the effects of changing model 205 

assumptions for community case isolation, the probability of case detection, the effectiveness of 206 

control measures, vaccine effectiveness, the capacity of the contact tracing system, and the risk of 207 

hospitalisation (Supp. Table S5).     208 

From each simulation, we output the number of infections, detected cases, hospital admissions and 209 

deaths, and the time spent under different traffic light settings. All simulations were run for a one year 210 

period and results were averaged over 50 independent simulations of the stochastic model for each 211 

set of parameters. 212 

 213 

Supplementary Table S5 Parameters used in the sensitivity analysis 214 

Parameters Baseline values Scenarios tested 

Comm. cases isolation effectiveness (%) 100 50 

Probability of case detection 0.45 0.30 

Reduction in transmission (%) at G/O/R/E1 10/20/30/60 0/10/20/60 

Vaccine effectiveness (ei/et/ed
2 )(%) 70/50/80 50/40/80 

National vaccination coverage (%) 90 95 

Contact tracing  Capacity3 = 100 cases per day    

pTrace4=70 

1.No cap, pTrace=70 

2.Cap=250 cases per day, pTrace=70 

3.Cap=100 cases per day, pTrace=30 

4.No contact tracing 

1 reduction in transmission a G/O/R/E – Green/Orange/Red and Emergency setting 
215 

2 ei/et/ed – Effectiveness of vaccine against infection/transmission given infection/disease given infection 
216 

3 Capacity – Contact tracing capacity above which no infections are found by contact tracing compared to 
217 

70% before  capacity is reached.  
218 

4 pTrace – percentage of infections found by contact tracing before capacity is reached  
219 

 220 

 221 

Sensitivity analysis of community case isolation effectiveness 222 

Reducing the effectiveness of case isolation in the community from 100% to 50% reduces the 223 

effectiveness of TTIQ and leads to increased transmission. As a result, the trigger points for escalating 224 

control measures are met sooner (and those for relaxing are met later), increasing the amount of time 225 

spent under more stringent settings (Supp. Fig. S2c, Supp. Table S6.C). For example, in a low tolerance 226 
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response, the time spent in the emergency setting increases from 15% to 21% (one extra month in the 227 

emergency setting) relative to the baseline scenario. The increase in time in the emergency setting is 228 

not as profound for the medium and high tolerance response. The number of infections, 229 

hospitalisations and deaths are higher than in the baseline scenario. However, this increase is offset 230 

to a large extent by the more stringent public health response described above, keeping the epidemic 231 

to pre-defined tolerances.  232 

 233 

Sensitivity analysis of contact tracing system capacity 234 

Under a low tolerance response, increasing contact tracing capacity from 100 cases to 250 cases per 235 

day increases the effect of TTIQ on transmission from 8% to 16%, which leads to fewer infections and 236 

hospitalisations and much less time spent in emergency setting (Supp. Table S6.G2). However, it has 237 

almost no effect on health outcomes or time spent in lockdown under a medium or high tolerance 238 

response. This is because the number of cases is almost always above 250 cases per day, so contact 239 

tracing is always performing at the reduced level in these scenarios. With no assumed limit to contact 240 

tracing capacity, there is a clear decrease in the number of infections and hospitalisations. Under a 241 

low and medium tolerance response, the time spent in red and emergency slightly increases relative 242 

to the baseline scenario as a higher proportion of infections are detected (about 50% as compared to 243 

30% under the baseline setting) (Supp. Fig. S2g, Supp. Table S6.G1). Under a high tolerance response, 244 

the time spent in emergency decreases, but the time spent in red setting increase.  245 

Reducing the proportion of contacts of a confirmed case who are  via contact tracing from 70% to 30% 246 

has almost no effect on infections, hospitalisations or time spent in emergency setting relative to the 247 

baseline scenario (Supp. Table S6.G3) under the low and medium response. This is because the 248 

number of cases quickly exceeds the contact tracing capacity (set to 100 cases) in all scenarios. It 249 

resulted in more infections, cases, and hospitalisations, but had no effect on time spent in emergency 250 

setting under a high tolerance response. 251 

 252 

Sensitivity analysis of probability of case detection 253 

For the low and medium tolerance scenarios, a reduction in the probability of case detection, i.e. the 254 

probability of individuals seeking a test and testing positive, from 45% to 30% corresponds to a slower 255 

response to the increase in cases and a delayed move to higher traffic lights, leading to more 256 

infections, hospitalisations and deaths over the year (Supp. Fig. S2d, Supp. Table S6.D).  257 

Interestingly, reducing the probability of case detection resulted in fewer infections and deaths under 258 

a high tolerance strategy than under the medium tolerance strategy. Essentially, the high tolerance 259 

strategy became more effective at controlling the spread of COVID-19 because the higher tolerance 260 
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scenario uses hospital beds as a metric of demand on the healthcare system (as opposed to case 261 

numbers in the low and medium tolerance response), which is not as affected by the lower probability 262 

of case detection. This suggests that the low and medium tolerance scenario display a higher 263 

sensitivity to the probability of case detection.  264 

 265 

Sensitivity analysis of traffic light control effectiveness  266 

Reducing the effectiveness of public health measures under the different traffic light settings in 267 

reducing transmission of the virus leads to a large increase in infections, hospitalisations and deaths 268 

(Supp. Fig. S2e, Supp. Table S6.E). The time spent in emergency setting is doubled under a low 269 

tolerance response (about one third of the year in emergency setting) and almost tripled under a 270 

medium and high tolerance response (2 months in emergency) relative to the baseline parameter 271 

settings.   272 

 273 

Sensitivity analysis of vaccine effectiveness 274 

Reducing vaccine effectiveness against infection from 70% to 50% and against transmission from 50% 275 

to 40% causes a more than a threefold increase in hospitalisations and about a twofold increase in the 276 

number of deaths (Supp. Fig. S2f, Supp. Table S6.F). The time spent in the emergency setting increases 277 

to about half of the year under a medium or high tolerance response, and about two thirds of the year 278 

under a low tolerance response.  279 

 280 

Sensitivity analysis of vaccination coverage  281 

Increasing the national vaccination coverage from 90% to 95% results in a significant drop in all public 282 

health outcomes and in the time spent in the red and emergency settings, with a near two-fold 283 

reduction in the number of hospitalisations and deaths (Supp. Fig. S2h, Supp. Table S6.H).  284 

 285 

 286 
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 287 

Supplementary Figure S2 Percentage impact of different model parameter settings compared to the 288 

baseline (Table 2), for the low (blue), medium (red) and high (yellow) tolerance scenarios. 289 

 290 

 291 

 292 
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Supplementary Table S6: Median number of infections, detected cases, hospitalisations, peak hospital 293 

occupancy and deaths over a year under the low, medium and high tolerance outbreak management 294 

response for all scenarios tested. The G, O, R, and E columns indicate the median percentage time 295 

spent in each of the traffic light setting (green, orange, red and emergency). The TTIQeff indicate the 296 

reduction in transmission as a result of the test, trace, isolate, quarantine system. 297 

scenario infections cases hospitalisations 
peak 

beds 
deaths G Y R E TTIQeff 

BASELINE SCENARIO           

Very low tolerance 32,000 13,000 400 40 50 0% 3% 82% 15% 12% 

Low tolerance 215,000 66,000 2,900 130 410 0% 0% 85% 15% 8% 

Medium tolerance 553,000 165,000 7,600 470 1,100 0% 23% 72% 5% 8% 

High tolerance 684,000 204,000 9,500 650 1,390 7% 38% 49% 6% 8% 

A1. Border cases = 10K          

Very low tolerance 37,000 15,000 400 40 50 0% 0% 78% 22% 12% 

Low tolerance 217,000 66,000 2,900 130 400 0% 0% 84% 16% 8% 

Medium tolerance 551,000 165,000 7,500 470 1,090 0% 21% 75% 5% 8% 

High tolerance 690,000 206,000 9,500 650 1,390 6% 38% 50% 6% 8% 

A2. Border cases = 20K          

Very low tolerance 46,000 17,000 400 40 50 0% 0% 61% 39% 11% 

Low tolerance 223,000 67,000 2,800 130 400 0% 0% 84% 16% 8% 

Medium tolerance 554,000 166,000 7,400 460 1,080 0% 19% 76% 5% 8% 

High tolerance 703,000 210,000 9,600 650 1,410 6% 38% 50% 6% 8% 

A3. Community seed cases = 10K, border cases = 10K        

Very low tolerance 93,000 32,000 1,100 200 150 0% 0% 75% 25% 10% 

Low tolerance 245,000 75,000 3,200 210 450 0% 0% 82% 18% 8% 

Medium tolerance 588,000 176,000 8,000 470 1,170 0% 12% 83% 5% 8% 

High tolerance 725,000 217,000 9,900 640 1,460 0% 43% 51% 6% 8% 

A4. Community seed cases = 10K, border cases 20K         

Very low tolerance 103,000 34,000 1,100 210 150 0% 0% 60% 40% 9% 

Low tolerance 257,000 78,000 3,200 200 450 0% 0% 82% 18% 8% 

Medium tolerance 604,000 181,000 8,100 470 1,170 0% 12% 83% 5% 8% 

High tolerance 747,000 224,000 10,100 640 1,490 0% 44% 51% 6% 8% 

B.  Low border cases isolation effectiveness (20%)         

Low tolerance 216,000 66,000 2,900 130 420 0% 0% 84% 16% 8% 

Medium tolerance 557,000 167,000 7,700 470 1,110 0% 20% 75% 5% 8% 

High tolerance 689,000 206,000 9,600 650 1,400 6% 38% 50% 6% 8% 
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C.  Low community cases isolation effectiveness (50%)        

Low tolerance 235,000 71,000 3,200 140 450 0% 0% 79% 21% 4% 

Medium tolerance 710,000 212,000 9,900 490 1,460 0% 14% 81% 5% 4% 

High tolerance 762,000 228,000 10,700 700 1,570 6% 29% 58% 7% 4% 

D.  Low testing probability (30%)          

Low tolerance 308,000 65,000 4,200 190 600 0% 0% 84% 16% 5% 

Medium tolerance 745,000 152,000 10,400 690 1,520 2% 35% 59% 5% 5% 

High tolerance 725,000 148,000 10,100 680 1,480 6% 32% 55% 7% 5% 

E.  Low traffic light control effectiveness         

Low tolerance 252,000 77,000 3,400 150 490 0% 0% 70% 30% 8% 

Medium tolerance 774,000 231,000 10,700 540 1,570 0% 17% 67% 15% 8% 

High tolerance 873,000 261,000 12,300 850 1,820 4% 25% 57% 14% 8% 

F.  Low vaccination effectiveness (50/40/80)         

Low tolerance 386,000 118,000 5,300 200 780 0% 0% 32% 68% 8% 

Medium tolerance 1,000,000 305,000 14,100 770 2,190 0% 2% 60% 38% 8% 

High tolerance 1,000,000 305,000 14,100 1,370 2,220 0% 4% 71% 25% 8% 

G1.  Unlimited contact tracing capacity         

Low tolerance 128,000 66,000 1,700 70 240 0% 1% 97% 2% 17% 

Medium tolerance 256,000 133,000 3,500 120 490 0% 29% 71% 0% 18% 

High tolerance 481,000 252,000 6,700 290 970 8% 53% 39% 0% 18% 

G2.  High contact tracing capacity (250)         

Low tolerance 136,000 66,000 1,800 80 250 0% 0% 97% 3% 16% 

Medium tolerance 555,000 170,000 7,700 470 1,110 0% 24% 72% 5% 8% 

High tolerance 679,000 206,000 9,400 650 1,380 8% 39% 48% 6% 8% 

G3.  Low proportion of contacts traced (30%)         

Low tolerance 219,000 66,000 2,900 130 410 0% 0% 84% 16% 8% 

Medium tolerance 557,000 166,000 7,700 470 1,110 0% 20% 75% 5% 8% 

High tolerance 690,000 206,000 9,600 650 1,410 6% 38% 50% 6% 8% 

G4.  No contact tracing          

Low tolerance 222,000 66,000 3,000 130 420 0% 0% 84% 16% 7% 

Medium tolerance 558,000 166,000 7,700 470 1,100 0% 20% 76% 5% 7% 

High tolerance 690,000 206,000 9,600 650 1,400 6% 38% 50% 6% 7% 

H.  High vaccination coverage (95%) 

Low tolerance 73,000 31,000 700 30 110 0% 48% 52% 0% 8% 

Medium tolerance 383,000 114,000 4,300 170 640 9% 47% 44% 0% 8% 

High tolerance 504,000 150,000 5,700 290 880 14% 57% 29% 0% 8% 

 298 
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 299 

Supplementary Figure S3 Heatmaps of total infections per year (top row), proportion of time spent in the Red setting (middle row), and proportion of time spent in the 
Emergency setting (bottom row), for the very low (first column), low (second column), medium (third column), and high (fourth column) tolerance scenarios. Each heatmap 
was produced through different combinations of initial community seed infections and border infections per year, as described in Table 2. 
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